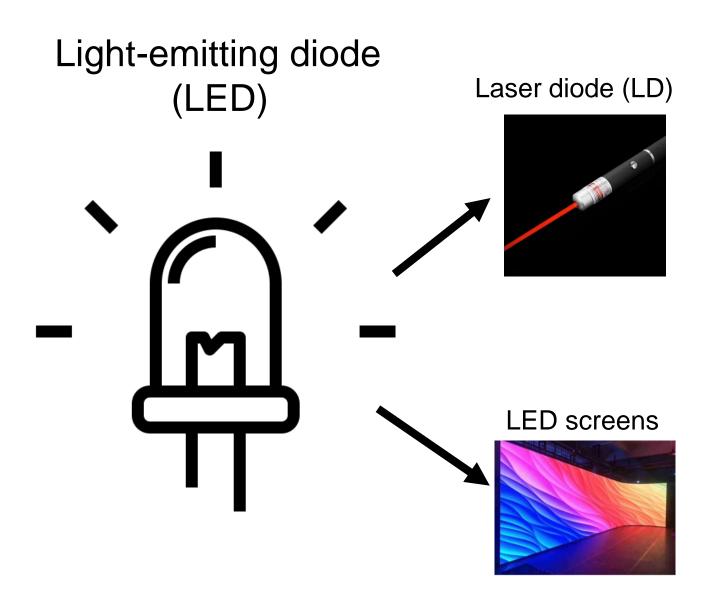
Engineering novel light-emitting devices by controlling light-matter interactions

Konstantinos Daskalakis (Kostas)

Luminous Materials and Devices

Mechanical and Materials Engineering

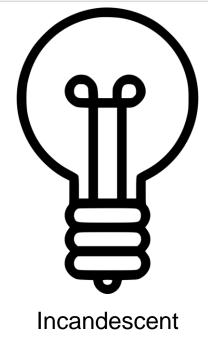
konstantinos.daskalakis@utu.fi


- Light-emitting devices and lighting
- Generating light in semiconductors
- Photonics for controlling light matter interactions

- Light-emitting devices and lighting
- Generating light in semiconductors
- Photonics for controlling light matter interactions

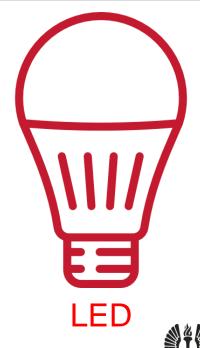
Light emitting devices

Applications


- optical communications
- optical computing and interconnects
- data transmission and signal processing
- optical storage
- optical imaging
- displays
- lighting



Lighting Technologies ("Light bulbs")


History of light bulb

Age	19 th century	20 th century	21 th century
Lifespan	1000 hours	8500 hours	25000 hours
Cost	\$0.5	\$4	\$6-20
Efficiency	16 lm/W	70 lm/W	300 lm/W
Fabrication	Easy	Very difficult	Difficult

Fluorescent

Improving artificial illumination

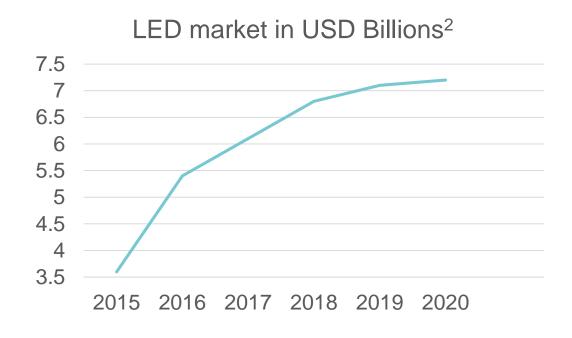
Isamu Hiroshi

Akasaki

Shuji Nakamura Artificial illumination is an inherently non-sustainable human need!

¹Global lighting market currently consumes 20% of total electric power generated; 400 million tons of CO₂

The LED breakthrough:
Decreased energy consumption.


But, what is the impact to the environment?

Amano

¹T. Baumgartner et. al., "Lighting the Way: Perspectives on the Global Lighting Market." McKinsey & Company, 2012.

Environmental impact of LEDs

LEDs

- -contain rare earth and toxic heavy metal
- -mass-produced
- -fabrication and waste management has negative environmental impact⁴

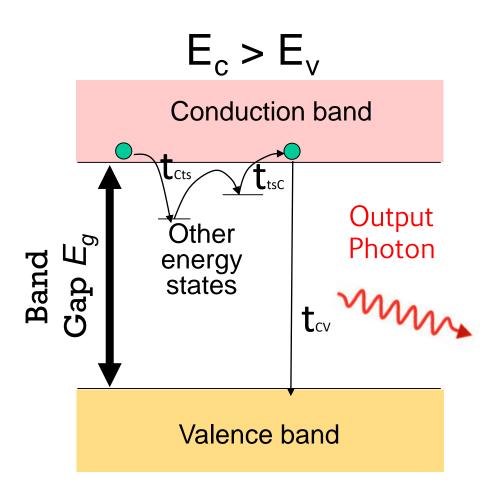
- 2. https://www.ledtopplus.com/blog/analysis-of-the-development-trend-of-led-lamps-market-in-2018-62
- 3. Franz, M., & Wenzl, F. P. (2017). Critical review on life cycle inventories and environmental assessments of LED-lamps. *Critical Reviews in Environmental Science and Technology*, *47*(21).

OLEDs, a solution with new exciting problems

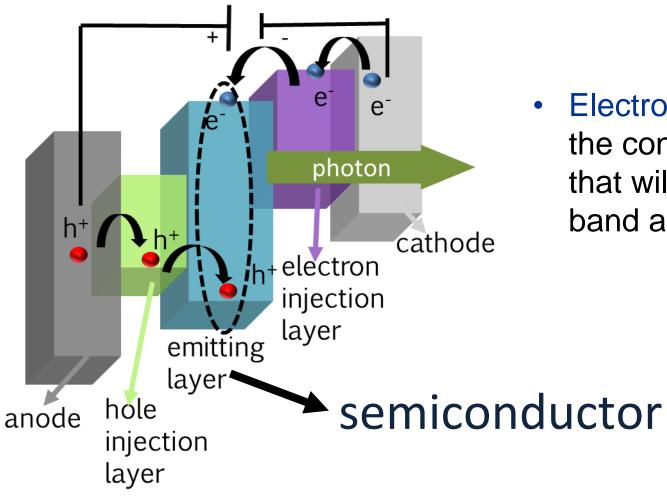
OLED lamps

New organic LED technology - OLED – almost solves LED problems.

OLEDs are easy to fabricate and organic semiconductors are inherently "green material".

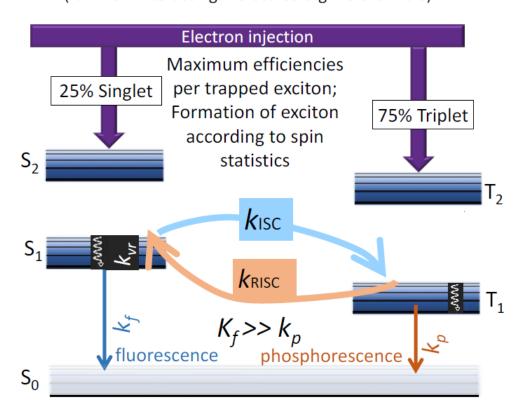

Today's COMMERCIAL OLEDs: 1) unstable, 2) small lifetime and 3) use heavy metals.

- Light-emitting devices and lighting
- Generating light in semiconductors
- Photonics for controlling light matter interactions


Electroluminescence in semiconductors

 Electroluminescence –we populate the conduction band with electrons that will (hopefully) relax to valence band and give us photons!

Electroluminescence in semiconductors

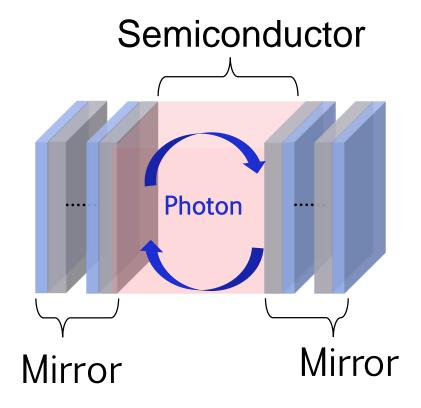


 Electroluminescence –we populate the conduction band with electrons that will (hopefully) relax to valence band and give us photons!

OLEDs have many non-radiative paths: low lifespan and efficiency

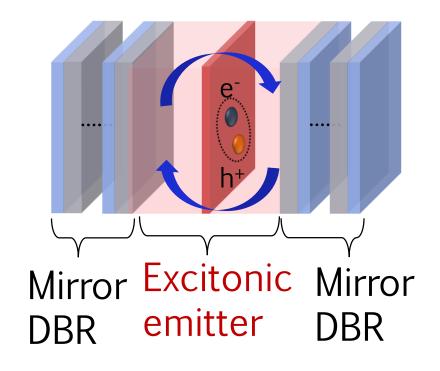
Ideal organic semiconductor (few non-interacting molecules-e.g. no excimers)

 In OLEDs, generating EL is a complex process!


Xiao et. al., *Appl. Sci.*, vol. 8, no. 9, p. 1449, Aug. 2018. Murawski et. al., *Adv. Mater.*, vol. 25, no. 47, pp. 6801–6827, 2013. Li et. al., *Nat. Commun.*, vol. 10, no. 1, p. 731, Dec. 2019

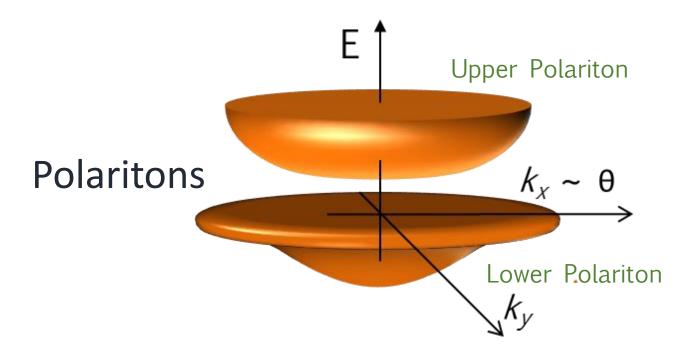
- Light-emitting devices and lighting
- Generating light in semiconductors
- Photonics for controlling light matter interactions

Controlling emission rates with microcavities



We can use photonics to:

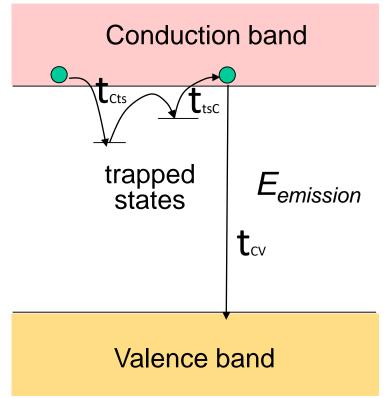
- Accelerate processes that result in emission of light with specific colour.
- Suppress non-radiative processes.



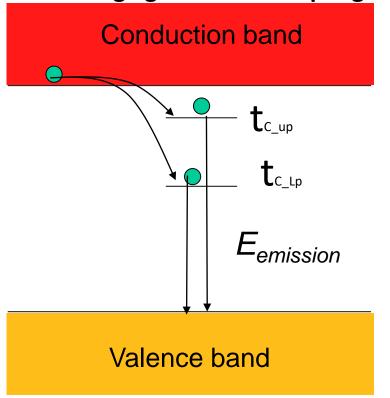
Creating new states "Polaritons in microcavities"

We can use photonics to:

- Induce strong interactions between light and matter to create new energy states (eigenstates).



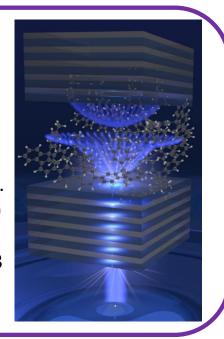
Engineering optical properties of materials


Polaritons have properties of both light and matter and allow us to tune emission rates.

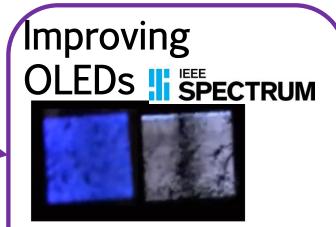
Before strong light-matter coupling

Stranius et. al., *Nat. Commun.*, vol. 9, no. 1, p. 2273, Dec. 2018. Hertzog et. al., *Chem. Soc. Rev.*, vol. 48, no. 3, pp. 937–961, Feb. 2019. Berghuis et. al., *Adv. Funct. Mater.*, p. 1901317, Jul. 2019. Wang et. al., *Nat. Commun.*, vol. 12 p. 1874, 2021. Wang et. al., *Nat. Commun.*, vol. 10 p. 1614, 2021.

After strong light-matter coupling

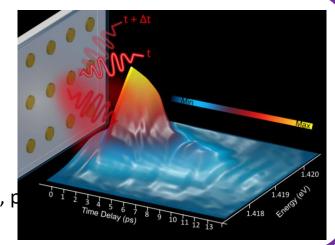


LMD research in a nutshell


Molecular solid-state lasers

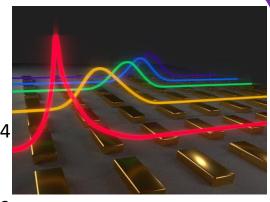
Daskalakis et. al. Nature Materials, 13(3), p. 271 (2014). Physical Review Letters 115 (3) 035301 (2015).

Lerario et al. *Nature Physics* 13 (9) p. 837 (2017).



<u>Daskalakis et. al.</u> ACS Photonics, 6(11), p. 2655 (2019).

Tiny and ultrafast lasers


<u>Daskalakis et. al.</u> *NanoLetters*, 18 (4), p 2658 (2018).

Manipulating dynamics in molecules

Hakala et. al. *Nature Physics* 14 (7) p. 739 (2018).

Väkeväinen et. al. *Nature Communications* 11 (1) p. 3139 (2020).

Acknowledgements

Päivi Törmä

A. Väkeväinen


T. Hakala

A. Moilanen

R. Guo

J. Martikainen

Imperial College London

S. Kéna-Cohen

R. Murray

S. Maier

A. Fieramosca

CNRNANOTECHNOLOGY

INSTITUTE of PHYSICS

Polish Academy of Sciences

N. Bobrovska

M. Matuszewski

G. Lerario

F. Barachati,

D. Ballarini

L. Dominici

M. De Giorgi

G. Gigli

D. Sanvitto

Starting Grant

European Union's Horizon 2020 research and innovation programme (grant agreement No. [948260])

