

Intro to LLMs in Healthcare

Assistant Professor Jyrki Savolainen LUT-University / CSC – IT Center for Science


23rd Oct 2025

About me

- Jyrki Savolainen

○ Application Specialist @

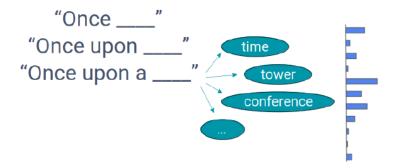
o DSc. (Econ.), MSc. (Eng.)

- Research and Teaching
 - Simulation, Business Data Analytics

ojyrki.savolainen@lut.fi

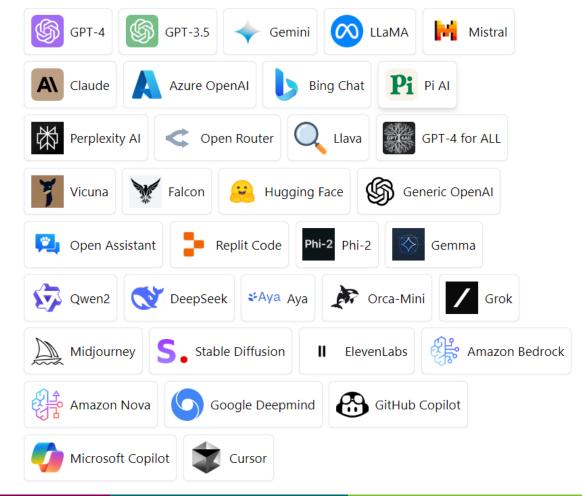
Contents

• Large Language Models (LLMs) and Foundational Models


• Tailoring LLMs

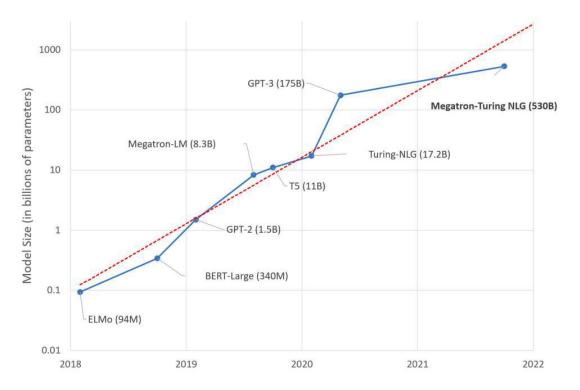
Large Language Models are... models

- Statistical, autoregressive model of text
- Generate sequence of most likely tokens in context


 $P(\text{token}_n \mid \text{token}_1, \text{token}_2, ..., \text{token}_{n-1})$

Large Language Models (LLMs)

• Trained with massive datasets


- Available for download
 - Require a lot of resources (dependent on model size)
 - o E.g. huggingface.co

Increasing Size and Complexity of the Foundational Models

- Model size measured in billions of parameters (tokens)
- In general: "Higher number of tokens leads to better reasoning capabilities" with the cost of computational requirements

Computational Costs?

Microsoft chooses infamous nuclear site for AI power

20 September 2024

Share Save

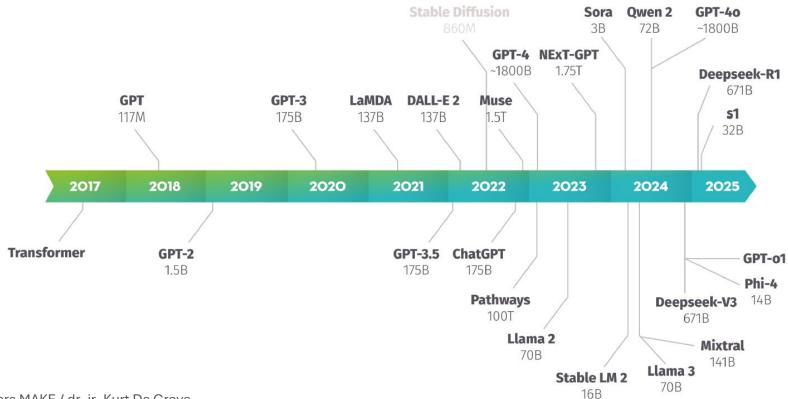
Natalie Sherman

BBC News

America's Three Mile Island energy plant, the site of the worst nuclear accident in US history, is preparing to reopen as Microsoft looks for ways to satisfy its growing energy needs.

The tech giant said it had signed a 20-year deal to purchase power from the Pennsylvania plant, which would reopen in 2028 after improvements.

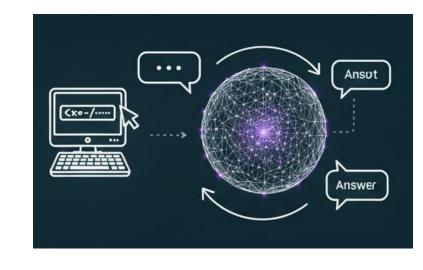
The agreement is intended to provide the company with a clean source of energy as power-hungry data centres for artificial intelligence (AI) expand.


The plan will now go to regulators for approval.

.

Sisäinen

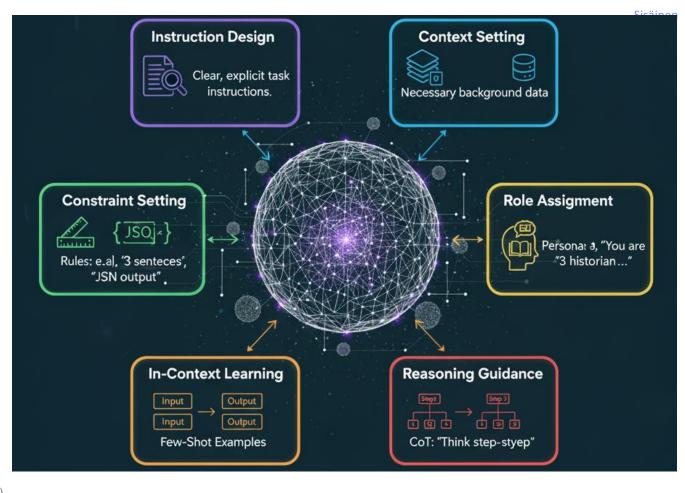
TRAINING COST	training TIME	GPUs	parameters
\$1 million	2 days	512	1.5B
\$10 million	21 days	2,000	175B
\$200 million	3 months	8,000	1,800B
\$1 billion?	5 months	25,000	10T (10,000B)
\$? billion?	? year ? months	100,000	?
		/llm-trainin	g-cost-how
	\$1 million \$10 million \$200 million \$1 billion? \$? billion?	\$1 million 2 days \$10 million 21 days \$200 million 3 months \$1 billion? 5 months \$? billion? ? year ? months	\$1 million 2 days 512 \$10 million 21 days 2,000 \$200 million 3 months 8,000 \$1 billion? 5 months 25,000 \$? billion? ? year ? months 100,000 https://gregoreite.com/llm-trainin


Milestones

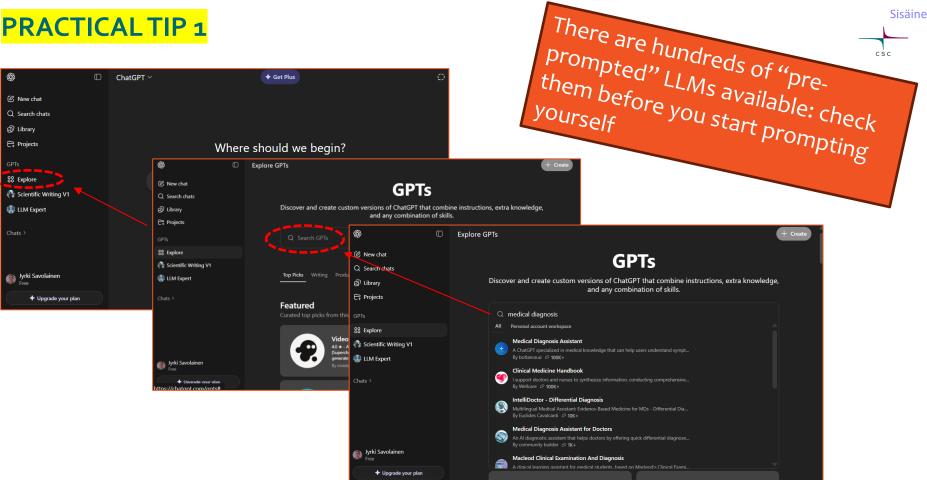
THIS WEBINAR: Tailoring LLMs for a specific purpose

- For simple tasks, simple models are enough
 - e.g. document summarization or finding information from multiple documents
- There is the option of <u>prompting the</u> <u>existing models</u>
- If you want your own model, then simple,
 "small scale", LLMs can run on local servers
 or are affordable for daily use through APIs
 Case example coming up

Options for Tailoring LLMs


Method	Resource Intensity	Changes Model Parameters	Best For
1. Prompt Engineering	Lowest (Inference Cost)	No	Changing tone, task format, simple few-shot tasks.

EXAMPLE:


"You are an expert financial analyst. Your goal is to provide concise, factual summaries of stock performance. Never provide investment advice, only historical data and public company information. Respond in a formal, professional tone."

LUT Group Confidential - Other information (3)

Prompt Engineering

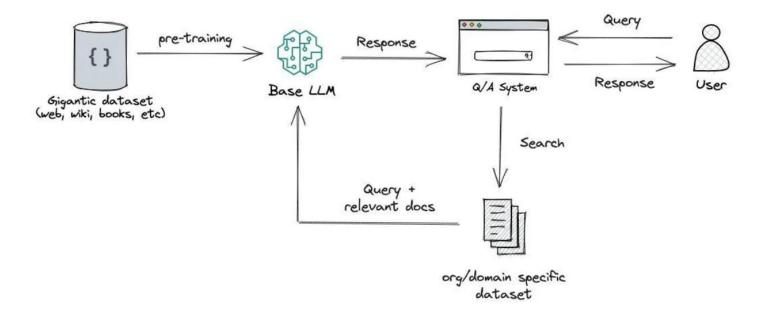
PRACTICAL TIP 1

Sisäinen

"LLM Agents"

- Pre-trained LLMs from which you can query for specific topics
- Can be trained based on vast data focused on certain area

Method	Resource Intensity	Changes Model Parameters	Best For
1. Prompt Engineering	Lowest (Inference Cost)	No	Changing tone, task format, simple few-shot tasks.
2. Retrieval-Augmented Generation (RAG)	Low to Moderate (System Design & Maintenance)	No	Incorporating new/proprietary knowledge, reducing hallucinations.


EXAMPLE:

Organizational instructions, code of conduct, strategy, etc. are used as a training material for the LLM(s)

LUT Group Confidential - Other information (3Y)

Retrieval-Augmented Generation (RAG)

PRACTICAL TIP 2

2.5 Flash ▼

Google Gemini AUTOMATICALLY connects with your Google Drive Documents (the same with MS Copilot and OneDrive) I have written a paper on the Evolutionary Spare Parts. Check

Workspace & 1 more ∨

The paper "Evolutionary Spare Parts" presents and formalizes a self-evolutionary design framework aimed at automatically optimizing the physical shape of a part for a unique, userspecific application. The core proposition is to create a continuous feedback loop between the physical product and its virtual counterpart, the Digital Twin (DT). In this system, automatically gathered process data from the application environment is used by Evolutionary Algorithms (EAs) to iteratively refine the part's design topology in the virtual space. By leveraging the design freedom of Additive Manufacturing (AM), this automated process allows for minor, valuable product improvements in an economically feasible way, resulting in improved application performance with every new spare part instance installed.

the latest version and summarize the plot in two paragraphs

This self-evolutionary logic unlocks a disruptive business model with solid potential in high-end industrial applications where the customer is motivated to pay extra for performance. The

Method	Resource Intensity	Changes Model Parameters	Best For
1. Prompt Engineering	Lowest (Inference Cost)	No	Changing tone, task format, simple few-shot tasks.
2. Retrieval-Augmented Generation (RAG)	Low to Moderate (System Design & Maintenance)	No	Incorporating new/proprietary knowledge, reducing hallucinations.
3. Fine-Tuning	Moderate to High (Training/Compute Cost)	Yes	Customizing style/tone, adapting to specific task formats, improving performance on a narrow task.
4. Reinforcement Learning with Human Feedback (RLHF) / Direct Preference Optimization (DPO)	Collection/Training	Yes	Aligning model behavior with human values, safety, or complex subjective preferences.

LUT Group Confidential - Other information (3Y)

facebook.com/CSCfi

twitter.com/CSCfi

youtube.com/CSCfi

linkedin.com/company/csc---it-center-for-science

github.com/CSCfi